Sites of Action of Elevated CO2 on Leaf Development in Rice: Discrimination between the Effects of Elevated CO2 and Nitrogen Deficiency
نویسندگان
چکیده
Elevated CO2 concentrations (eCO2) trigger various plant responses. Despite intensive studies of these responses, the underlying mechanisms remain obscure. In this work, we investigated when and how leaf physiology and anatomy are affected by eCO2 in rice plants. We analyzed the most recently fully expanded leaves that developed successively after transfer of the plant to eCO2. To discriminate between the effects of eCO2 and those of nitrogen deficiency, we used three different levels of N application. We found that a decline in the leaf soluble protein content (on a leaf area basis) at eCO2 was only observed under N deficiency. The length and width of the leaf blade were reduced by both eCO2 and N deficiency, whereas the blade thickness was increased by eCO2 but was not affected by N deficiency. The change in length by eCO2 became detectable in the secondly fully expanded leaf, and those in width and thickness in the thirdly fully expanded leaf, which were at the leaf developmental stages P4 and P3, respectively, at the onset of the eCO2 treatment. The decreased blade length at eCO2 was associated with a decrease in the epidermal cell number on the adaxial side and a reduction in cell length on the abaxial side. The decreased width resulted from decreased numbers of small vascular bundles and epidermal cell files. The increased thickness was ascribed mainly to enhanced development of bundle sheath extensions at the ridges of vascular bundles. These observations enable us to identify the sites of action of eCO2 on rice leaf development.
منابع مشابه
Response of leaf endophytic bacterial community to elevated CO2 at different growth stages of rice plant
Plant endophytic bacteria play an important role in plant growth and health. In the context of climate change, the response of plant endophytic bacterial communities to elevated CO2 at different rice growing stages is poorly understood. Using 454 pyrosequencing, we investigated the response of leaf endophytic bacterial communities to elevated CO2 (eCO2) at the tillering, filling, and maturity s...
متن کاملPhotosynthesis, carboxylation and leaf nitrogen responses of 16 species to elevated pCO2 across four free-air CO2 enrichment experiments in forest, grassland and desert
The magnitude of changes in carboxylation capacity in dominant plant species under long-term elevated CO2 exposure (elevated pCa) directly impacts ecosystem CO2 assimilation from the atmosphere. We analyzed field CO2 response curves of 16 C3 species of different plant growth forms in favorable growth conditions in four free-air CO2 enrichment (FACE) experiments in a pine and deciduous forest, a...
متن کاملInteractive effects of elevated CO2 concentration and nitrogen supply on partitioning of newly fixed 13C and 15N between shoot and roots of pedunculate oak seedlings (Quercus robur).
Pedunculate oak (Quercus robur L.) seedlings were grown for 3 or 4 months (second- and third-flush stages) in greenhouses at two atmospheric CO2 concentrations ([CO2]) (350 or 700 micromol mol(-1)) and two nitrogen fertilization regimes (6.1 or 0.61 mmol N l(-1) nutrient solution). Combined effects of [CO2] and nitrogen fertilization on partitioning of newly acquired carbon (C) and nitrogen (N)...
متن کاملLong-Term CO2 Stimulation of Carbon Influx Into Global Terrestrial Ecosystems: Issues and Approaches
Estimating the additional amount of global photosynthetic arbon influx into terrestrial ecosystems (PG) becomes possible with a leaf-level factor (Y) developed by Luo & Mooney only when an increase in atmospheric CO2 concentration (Ca) is small. Applying the Y factor to study long-term stimulation of PG with a large increase in Ca needs understanding of adjustments in leaf properties, canopy st...
متن کاملRelationship between photosynthesis and leaf nitrogen concentration in ambient and elevated [CO2] in white birch seedlings.
To study the effects of elevated CO2 concentration ([CO2]) on relationships between nitrogen (N) nutrition and foliar gas exchange parameters, white birch (Betula papyrifera Marsh.) seedlings were exposed to one of five N-supply regimes (10, 80, 150, 220, 290 mg N l(-1)) in either ambient [CO2] (360 micromol mol(-1)) or elevated [CO2] (720 micromol mol(-1)) in environment-controlled greenhouses...
متن کامل